matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraeinzige einfache Gruppe |G|=60
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Algebra" - einzige einfache Gruppe |G|=60
einzige einfache Gruppe |G|=60 < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

einzige einfache Gruppe |G|=60: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:48 Di 10.11.2009
Autor: kunzmaniac

Aufgabe
Sei $G$ eine einfache Gruppe der Ordnung 60. Zeigen Sie, dass durch Konjugation der fünf 2-Sylowgruppen ein Gruppenhomomorphismus
[mm] $\phi [/mm] : G [mm] \mapsto S_{5}$ [/mm] definiert wird, der einen Isomorphismus $G [mm] \cong A_{5}$ [/mm] induziert.

Ich habe diese Frage sonst nirgends gestellt.

Okay das bedeutet ja gerade, dass [mm] $A_{5}$ [/mm] die einzige einfache Gruppe der Ordnung 60 ist (bis auf Isomorphie natürlich).

Seien also P1..P5 die 2-Sylowgruppen von G.

Die Konjugation ist ja eine Operation von G auf der Menge der 2-Sylowgruppe, daraus ergibt sich doch folgende Abbildung:
[mm] $\phi(g) [/mm] := [mm] \sigma \in S_{5} [/mm] \ \ \ mit\ \ \ [mm] \sigma(P1) [/mm] = [mm] gP1g^{-1} [/mm] \ [mm] \, [/mm] \ [mm] ...\, [/mm] \ \ [mm] \sigma(P5) [/mm] = [mm] gP5g^{-1}$ [/mm]
Warum ist [mm] $\phi$ [/mm] wohldefiniert? Warum kann [mm] $gPig^{-1}$ [/mm] nie gleich [mm] $gPjg^{-1}$ [/mm] sein für [mm] $i\neq [/mm] j$?

Wie induziert [mm] $\phi$ [/mm] einen Isomorphismus?

Danke für Eure Hilfe!

        
Bezug
einzige einfache Gruppe |G|=60: Antwort
Status: (Antwort) fertig Status 
Datum: 19:08 Di 10.11.2009
Autor: felixf

Hallo!

> Sei [mm]G[/mm] eine einfache Gruppe der Ordnung 60. Zeigen Sie, dass
> durch Konjugation der fünf 2-Sylowgruppen ein
> Gruppenhomomorphismus
> [mm]\phi : G \mapsto S_{5}[/mm] definiert wird, der einen
> Isomorphismus [mm]G \cong A_{5}[/mm] induziert.
>  Ich habe diese Frage sonst nirgends gestellt.
>  
> Okay das bedeutet ja gerade, dass [mm]A_{5}[/mm] die einzige
> einfache Gruppe der Ordnung 60 ist (bis auf Isomorphie
> natürlich).
>  
> Seien also P1..P5 die 2-Sylowgruppen von G.
>  
> Die Konjugation ist ja eine Operation von G auf der Menge
> der 2-Sylowgruppe, daraus ergibt sich doch folgende
> Abbildung:
>  [mm]\phi(g) := \sigma \in S_{5} \ \ \ mit\ \ \ \sigma(P1) = gP1g^{-1} \ \, \ ...\, \ \ \sigma(P5) = gP5g^{-1}[/mm]
>  
> Warum ist [mm]\phi[/mm] wohldefiniert? Warum kann [mm]gPig^{-1}[/mm] nie
> gleich [mm]gPjg^{-1}[/mm] sein für [mm]i\neq j[/mm]?

Weil $g [mm] P_i g^{-1} [/mm] = g [mm] P_j g^{-1} \Leftrightarrow g^{-1} [/mm] g [mm] P_i g^{-1} [/mm] g = [mm] g^{-1} [/mm] g [mm] P_j g^{-1} [/mm] g [mm] \Leftrightarrow [/mm] e [mm] P_i [/mm] e = e [mm] P_j [/mm] e [mm] \Leftrigtarrow P_i [/mm] = [mm] P_j$ [/mm] gilt. Damit definiert [mm] $\phi$ [/mm] zuminest eine Abbildung $G [mm] \to S_5$. [/mm]

Dass diese ein Gruppenhomomorphismus ist musst du noch zeigen, das ist aber auch nicht schwer.

> Wie induziert [mm]\phi[/mm] einen Isomorphismus?

Du hast erstmal einen Gruppenhomomorphimus [mm] $\phi [/mm] : G [mm] \to S_5$. [/mm] Da $G$ einfach ist muss der Kern entweder [mm] $\{ e \}$ [/mm] oder $G$ sein. Wenn der Kern $G$ waere, wuerde es nach den Sylow-Saetzen genau eine 2-Sylowgruppe geben, was aber nicht der Fall ist: also ist [mm] $\phi$ [/mm] injektiv.

Damit ist [mm] $\phi(G) \subseteq S_5$ [/mm] eine Untergruppe der Ordnung [mm] $|\phi(G)| [/mm] = |G| = 60$, und [mm] $S_5$ [/mm] hat $5! = 60 [mm] \cdot [/mm] 2$ Elemente. Eine Unterguppe der Ordnung vom Index 2 ist immer ein Normalteiler, und der einzige Normalteiler von [mm] $S_5$ [/mm] (der nicht [mm] $\{ id \}$ [/mm] bzw. [mm] $S_5$ [/mm] ist) ist [mm] $A_5$: [/mm] also muss [mm] $\phi(G) [/mm] = [mm] A_5$ [/mm] sein und somit [mm] $\phi$ [/mm] einen Isomorphismus $G [mm] \cong A_5$ [/mm] induzieren.

LG Felix


Bezug
                
Bezug
einzige einfache Gruppe |G|=60: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 Di 10.11.2009
Autor: kunzmaniac

Vielen Dank,

Die Argumentation ist wirklich sehr verständlich, faszinierend wie man da so schnell drauf kommen kann!


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]